Interface to sagemaker$tuner$HyperparameterTuner.

sagemaker_hyperparameter_tuner(
  estimator,
  split,
  hyperparameter_ranges,
  strategy = "Random",
  max_jobs = 10L,
  max_parallel_jobs = 2L,
  ...
)

Arguments

estimator

Sagemaker estimator from sagemaker_estimator.

split

Train/validation dataset split from s3_split.

hyperparameter_ranges

A named list of model hyperparameters with sagemaker_ranges for tuning.

strategy

Tuning strategy: "Random" or "Bayesian".

max_jobs

Number of unique models to train during tuning.

max_parallel_jobs

Number of models to train simultaneously.

...

Additional named arguments sent to the underlying API.