This function returns a tibble with showing the models ranked closest to the
supplied model. Usually chained with the magrittr pipe %>%.
peak(leadrboard, ..., n = 10, how = "centered")
| leadrboard | leaderboard tibble returned by  | 
|---|---|
| ... | a number, numbers, or vector of numbers to that correspond to model
ids in the leaderboard. See  | 
| n | the number of rows to return. By default, the tibble will return 10 rows.
 | 
| how | takes values of  | 
A subset of the leaderboard tibble. Given the supplied model ids,
peak tries to return a tibble of length n. If the maximum distance
between model ids are greater than n, peak will return the shortest
tibble that includes all the models. In supporting consoles, the supplied
model ids are highlighted.
#> # A tibble: 10 x 13 #> rank id dir model metric score public method num group index tune #> <dbl> <id> <chr> <chr> <chr> <dbl> <dbl> <chr> <dbl> <dbl> <lis> <lis> #> 1 1. 26 model… glmnet Accur… 0.973 NA cv 5. 25. <lis… <lis… #> 2 2. 5 model… glmnet Accur… 0.964 NA boot 25. 1. <lis… <lis… #> 3 3. 14 model… rf Accur… 0.959 NA boot 25. 13. <lis… <lis… #> 4 4. 20 model… rf Accur… 0.959 NA boot 25. 19. <lis… <lis… #> 5 5. 22 model… rf Accur… 0.958 NA boot 25. 21. <lis… <lis… #> 6 6. 11 model… rf Accur… 0.958 NA boot 25. 10. <lis… <lis… #> 7 7. 8 model… rf Accur… 0.957 NA boot 25. 7. <lis… <lis… #> 8 8. 7 model… rf Accur… 0.957 NA boot 25. 6. <lis… <lis… #> 9 9. 18 model… rf Accur… 0.955 NA boot 25. 17. <lis… <lis… #> 10 10. 10 model… rf Accur… 0.955 NA boot 25. 9. <lis… <lis… #> # ... with 1 more variable: seeds <list>#> # A tibble: 10 x 13 #> rank id dir model metric score public method num group index tune #> <dbl> <id> <chr> <chr> <chr> <dbl> <dbl> <chr> <dbl> <dbl> <lis> <lis> #> 1 10. 10 model… rf Accura… 0.955 NA boot 25. 9. <lis… <lis… #> 2 11. 1 model… rf Accura… 0.955 NA boot 25. 1. <lis… <lis… #> 3 12. 25 model… rf Accura… 0.955 NA boot 25. 24. <lis… <lis… #> 4 13. 3 model… rf Accura… 0.955 NA boot 25. 3. <lis… <lis… #> 5 14. 24 model… rf Accura… 0.954 NA boot 25. 23. <lis… <lis… #> 6 15. 23 model… rf Accura… 0.954 NA boot 25. 22. <lis… <lis… #> 7 16. 9 model… rf Accura… 0.952 NA boot 25. 8. <lis… <lis… #> 8 17. 17 model… rf Accura… 0.952 NA boot 25. 16. <lis… <lis… #> 9 18. 2 model… rf Accura… 0.952 NA boot 25. 2. <lis… <lis… #> 10 19. 12 model… rf Accura… 0.951 NA boot 25. 11. <lis… <lis… #> # ... with 1 more variable: seeds <list>#> # A tibble: 10 x 13 #> rank id dir model metric score public method num group index tune #> <dbl> <id> <chr> <chr> <chr> <dbl> <dbl> <chr> <dbl> <dbl> <lis> <lis> #> 1 10. 10 model… rf Accura… 0.955 NA boot 25. 9. <lis… <lis… #> 2 11. 1 model… rf Accura… 0.955 NA boot 25. 1. <lis… <lis… #> 3 12. 25 model… rf Accura… 0.955 NA boot 25. 24. <lis… <lis… #> 4 13. 3 model… rf Accura… 0.955 NA boot 25. 3. <lis… <lis… #> 5 14. 24 model… rf Accura… 0.954 NA boot 25. 23. <lis… <lis… #> 6 15. 23 model… rf Accura… 0.954 NA boot 25. 22. <lis… <lis… #> 7 16. 9 model… rf Accura… 0.952 NA boot 25. 8. <lis… <lis… #> 8 17. 17 model… rf Accura… 0.952 NA boot 25. 16. <lis… <lis… #> 9 18. 2 model… rf Accura… 0.952 NA boot 25. 2. <lis… <lis… #> 10 19. 12 model… rf Accura… 0.951 NA boot 25. 11. <lis… <lis… #> # ... with 1 more variable: seeds <list>