This function returns a tibble with showing the models ranked closest to the
supplied model. Usually chained with the magrittr pipe %>%
.
peak(leadrboard, ..., n = 10, how = "centered")
leadrboard | leaderboard tibble returned by |
---|---|
... | a number, numbers, or vector of numbers to that correspond to model
ids in the leaderboard. See |
n | the number of rows to return. By default, the tibble will return 10 rows.
|
how | takes values of |
A subset of the leaderboard tibble. Given the supplied model ids,
peak
tries to return a tibble of length n
. If the maximum distance
between model ids are greater than n
, peak
will return the shortest
tibble that includes all the models. In supporting consoles, the supplied
model ids are highlighted.
#> # A tibble: 10 x 13 #> rank id dir model metric score public method num group index tune #> <dbl> <id> <chr> <chr> <chr> <dbl> <dbl> <chr> <dbl> <dbl> <lis> <lis> #> 1 1. 26 model… glmnet Accur… 0.973 NA cv 5. 25. <lis… <lis… #> 2 2. 5 model… glmnet Accur… 0.964 NA boot 25. 1. <lis… <lis… #> 3 3. 14 model… rf Accur… 0.959 NA boot 25. 13. <lis… <lis… #> 4 4. 20 model… rf Accur… 0.959 NA boot 25. 19. <lis… <lis… #> 5 5. 22 model… rf Accur… 0.958 NA boot 25. 21. <lis… <lis… #> 6 6. 11 model… rf Accur… 0.958 NA boot 25. 10. <lis… <lis… #> 7 7. 8 model… rf Accur… 0.957 NA boot 25. 7. <lis… <lis… #> 8 8. 7 model… rf Accur… 0.957 NA boot 25. 6. <lis… <lis… #> 9 9. 18 model… rf Accur… 0.955 NA boot 25. 17. <lis… <lis… #> 10 10. 10 model… rf Accur… 0.955 NA boot 25. 9. <lis… <lis… #> # ... with 1 more variable: seeds <list>#> # A tibble: 10 x 13 #> rank id dir model metric score public method num group index tune #> <dbl> <id> <chr> <chr> <chr> <dbl> <dbl> <chr> <dbl> <dbl> <lis> <lis> #> 1 10. 10 model… rf Accura… 0.955 NA boot 25. 9. <lis… <lis… #> 2 11. 1 model… rf Accura… 0.955 NA boot 25. 1. <lis… <lis… #> 3 12. 25 model… rf Accura… 0.955 NA boot 25. 24. <lis… <lis… #> 4 13. 3 model… rf Accura… 0.955 NA boot 25. 3. <lis… <lis… #> 5 14. 24 model… rf Accura… 0.954 NA boot 25. 23. <lis… <lis… #> 6 15. 23 model… rf Accura… 0.954 NA boot 25. 22. <lis… <lis… #> 7 16. 9 model… rf Accura… 0.952 NA boot 25. 8. <lis… <lis… #> 8 17. 17 model… rf Accura… 0.952 NA boot 25. 16. <lis… <lis… #> 9 18. 2 model… rf Accura… 0.952 NA boot 25. 2. <lis… <lis… #> 10 19. 12 model… rf Accura… 0.951 NA boot 25. 11. <lis… <lis… #> # ... with 1 more variable: seeds <list>#> # A tibble: 10 x 13 #> rank id dir model metric score public method num group index tune #> <dbl> <id> <chr> <chr> <chr> <dbl> <dbl> <chr> <dbl> <dbl> <lis> <lis> #> 1 10. 10 model… rf Accura… 0.955 NA boot 25. 9. <lis… <lis… #> 2 11. 1 model… rf Accura… 0.955 NA boot 25. 1. <lis… <lis… #> 3 12. 25 model… rf Accura… 0.955 NA boot 25. 24. <lis… <lis… #> 4 13. 3 model… rf Accura… 0.955 NA boot 25. 3. <lis… <lis… #> 5 14. 24 model… rf Accura… 0.954 NA boot 25. 23. <lis… <lis… #> 6 15. 23 model… rf Accura… 0.954 NA boot 25. 22. <lis… <lis… #> 7 16. 9 model… rf Accura… 0.952 NA boot 25. 8. <lis… <lis… #> 8 17. 17 model… rf Accura… 0.952 NA boot 25. 16. <lis… <lis… #> 9 18. 2 model… rf Accura… 0.952 NA boot 25. 2. <lis… <lis… #> 10 19. 12 model… rf Accura… 0.951 NA boot 25. 11. <lis… <lis… #> # ... with 1 more variable: seeds <list>